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Overview

● Core NLP tasks

● NLP pipeline: embeddings, CharCNN, 
BiRNNs

● Seq2seq and Transformers

● Language model embeddings: ELMo, 
ULMFit, BERT



Core NLP tasks

● Machine translation

● Text classification

● Spam/ham

● Sentiment analysis (reviews)

● Thematic text classification

● Text clustering
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Core NLP tasks

● Named Entity Recognition(NER)

● Syntactic Parsing
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Core NLP tasks

● Relation extraction (fact extraction)

● Summarization
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Core NLP tasks

● Question-answering Systems (QA)

● Conversational Systems, Chatbots

● Amazon Alexa

● Siri

● Yandex Alice
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NLP is simple, right?
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Why NLP is not that simple

● Language is highly ambiguous, there exist such phenomena like polysemy 
and homonymy

● Polysemy: assembly, board, court 

● Homonymy: bear, yard, train

● Press space bar to continue -> бар космический пресс продолжает работу

● There also exist sophisticated phenomena such as:

● Coreference: John hit the ball. He was angry

● Ellipsis: I ate the green apple and you, the red one.

● While humans can resolve such ambiguities by context easily enough, doing 
this automatically is extremely challenging
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Towards NLP Pipeline

● Until recently (2-4 years ago depending on a specific task) deep 
learning did not perform significantly better than classical machine 
learning. Now however the gap between these two approaches is 
rapidly increasing.

● For most NLP tasks classical approaches have a task-specific 
architecture and feature set that cannot be used in other tasks.

● Neural network architectures for different tasks have a lot more in 
common, while the features used are in most cases from one feature 
set. 

● Thus we can talk about a universal NLP pipeline
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NLP pipeline first steps: segmentation and 
tokenization

● For most NLP tasks we work with discrete unit or token (words) 
features.

● Token features should include some context-based information. 
In modern models context is usually sentence level.

● Many NLP tasks (e. g. machine translation) are solved on the 
sentence level. Others (e. g. chatbots) require extra sentence 
context.

● Thus first two steps of NLP pipeline are sentence segmentation 
and word tokenization.
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Token features: embeddings
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● An embedding is a mapping of discrete feature vector into dense vector of 
fixed dimension h.

● Classic example is word embedding.
Original vector: x = (0, 0, … , 1, 0, … 0) of length v, where v is the size of dictionary
Resulting vector: x’= (0.2, 0.8, …, -15.9) of length h.

● Notable advantages:

● Feature space dimension reduction.

● Distributional properties i. e. similar elements have close embeddings.

● Can be trained from scratch but pretraining can boost performance 
significantly



Embedding: vector magic
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Embeddings pretraining

● Let us train on the task of predicting next token given previous one

● Input: one-hot encoding of the previous token

● Output: probability distribution of the next token over vocabulary

● Activation function of the
last layer is softmax:

● W or W’ are embedding 
matrices

● Model is extremely simple
and we can train on unlabeled
data. Thus corpora used for 
training are large (Wiki++ )
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Continuous bag of words

● Let us use for predictions several-token contexts 
instead of one previous token

● For simplicity we will use weights 1 for all tokens 
present in context and 0 for all not present.

● Order of tokens in context is not taken into account

● This model resembles bag of words, 
thus the name: CBOW – continuous bag of words
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Skip-gram model

● Let us consider a dual task: predict context
given word

● Model is called skip-gram

● On downstream tasks works better 
than CBOW

● Output vector has the dimension V (size of 
vocabulary ) thus computing  softmax is 
computationally expensive. Many techniques 
can be used for optimization. The most 
popular: negative sampling
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Negative sampling

16

● Key idea: instead of predicting the output distribution we intend to 
differentiate each positive sample from k random samples.

● Positive samples are pairs of tokens and their contexts (w, c) occurred in the 
training data. 

● Negative samples are sampled as follows

● Loss formulation:

● Trained by SGD

● More computationally effective than computing full softmax while having 
leading to similar results  



Word2vec: summary and problems

● Word embeddings successfully solve 2 main problems of simple vector 
models:

● Embedding dim can be manageable: usually around 100-1000

● Embeddings can represent similarity of tokens (synonymy etc.)

● Vanilla word2vec have several unsolved problems:

● Embeddings are built using fixed dictionary. Vectors on out of vocabulary words 
are not defined. There are several traditional approaches to treat OOV:
– One vector for all OOV

– OOV depends on grammatical characteristics: e. g. a separate vector for OOV nouns, verbs, ect.

– OOV vector is computed as a mean for all embeddings in its context

● Embeddings depend only on the graphical form of the token i. e. embedding for 
“Train” is same in both contexts “Train, dev, test” and “Train arrives at 10:15”
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NLP pipline: token features 

● Usually token features can be split into 3 groups:

● Word embeddings. In academia embeddings pretrained on large corpus are usually tuned on 
smaller corpus. In practice having constant 
pretrained embeddings yield similar results 

● Char-level features: char embeddings for each token
are fed into CNN (or RNN) of limited dim. The result 
is concatenated with other token features

● Additional token features: POS-tags (or their
embeddings), capitalization etc.

● Method first introduced in its whole in :
Lample el al (2016) Neural Architectures for Named Entity Recognition and
Ma and Hovy (2016) End-to-end Sequence Labeling via Bi-direcitonal LSTM-CNNs-CRF



Modern approaches: Embeddings + 
CharCNN + BLSTM

● Almost any NLP task can be solved with
the following architecture:

● We compute context-independent 
feature for each token (embeddings, 
CharCNN, additional features)

● This vectors are fed into Bidirectional
RNN in order to compute context-
dependent features for each token

● Top layer is task specific: for example in 
NER popular top layer is CRF



Seq2seq without attention mechanism

● Main idea: most NLP tasks (e. g. MT) can be treated as follows: given input 
sequence generate output sequence (possibly of different length)

● 2 main parts of neural net – encoder and decoder (both consisting of recurrent 
layers). Encoder processes input and generates vector c with info of all 
sequence. 

● Decoder generates output sequence until EOS is generated. Input consists of 
c, previous decoder state h and output generated on the previous step

● Sutskever et al 2014 – “Sequence to sequence learning with neural networks”
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Vanilla seq2seq disadvantages

● The whole input is compressed into one vector.

● Thus the representation quality decreases for longer input sequences
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Attention mechanism

● Decoder states – si, encoder states – hj.

● Let us introduce attention ci – soft alignment between output at specific 
step and the elements of input that influence output most at that step

● Almost no decrease in the quality of translation
on longer sentences

● Bahdanau et al 2014 “Neural Machine Translation 
by Jointly Learning  to Align and Translate”
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Soft alignment
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Global and local attention

● Attention is calculated after decoder. Thus architecture becomes less 
sophisticated and stacking decoder layers can be realized in a natural way

● Local attention: attention is considered in window

● Attention history can be utilized

● Luong et al 2015“Effective 
Approaches to Attention-based 
Neural Machine Translation.”
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Transformer overview

● Main idea: we can train encoder-decoder structures without using RNNs 
with the help of attention mechanism.

● Training on comparable data yields similar results to RNN seq2seq.

● Using dense layers instead of RNNs is much more suitable for parallelism.

● Since without RNNs there is no information about relative positions of input 
and output tokens, we have to use positional embeddings:

● Vaswani et al (2017) Attention is all you need
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Scaled dot product attention and Multi-head 
attention
● Let us redefine dot product attention used in seq2seq as follows:

Let us have 3 matrices: Q (queries), K (keys)
and V (values).

● In classical attention Q corresponds to decoder states matrix, 
K = V to encoder states matrix.

● Let us define multi-head attention as follows:
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Attention on different heads
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Transformer encoder and decoder

● A good implementation
of transformer with
necessary comments
can be found here:
The Annotated 
Transformer
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Language modeling

● Language modeling is an NLP task of predicting the probability of the next 
token in sequence given all previous tokens 

● E. g. what sequence is more probable

● London is the capital of Great
– Britain

– Depression

● Let us compare language models with word2vec training task. Two key 
differences: 

● Language models take into account the order of tokens in context

● Word2vec uses a fixed size window as a context, LMs the whole previous text.

● This also allows to compute the probability of the whole sequence
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Embeddings from Language models- ELMo

● Language model is pretrained on large corpus

● Language model architecture follows NLP pipeline introduced earlier

● Token features are CharCNN (word-level embeddings are not used)

● CharCNN are fed into two stacked Bidirectional RNNs

● Top layers: Dense with relu followed by Dense with softmax

● Pretrained LM can be used in downstream tasks as follows:

● The target sentence is fed into LM

● Token representation is defined as follows: task-specific weighted sum of 
CharCNN and output of both BiRNNs
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ELMo advantages

● Pretrained model is trained on a more complex task than word2vec and 
uses deeper and more sophisticated architecture

● Unlike word2vec the resulting representation is context dependent

● Model allows for large
gains on most NLP tasks.

● Some researchers compare
pretraining LMs to the  
creation of ImageNet for
Computer Vision
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ULMFit

● ULMFit – SOTA for text classification task in 2018-2019
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BERT

● BERT: Transformers instead of RNNs in language model 
architecture

● Pretrained on extremely large corpora on two tasks:

● Masked language modeling

● Next sentence prediction

● SOTA for many NLP tasks
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Using BERT on various tasks
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XLNet
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Language model embeddings bibliography

● ELMo: Peters et al. (2018) Deep contextualized word representations

● ULMFit: Howard & Ruder (2018) Universal Language Model Fine-tuning for 
Text Classication

● OpenAI Transformer: Radford et al. (2018) Improving Language 
Understanding by Generative Pre-Training

● BERT: Devlin et al. (2019) BERT: Pre-training of Deep Bidirectional 
Transformers for Language Understanding

● XLNet: Yang et al. (2019) XLNet: Generalized Autoregressive Pretraining for 
Language Understanding

● RoBERTA: Liu et al. (2019) RoBERTa: A Robustly Optimized BERT Pretraining
Approach
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Takeaways

● The language ambiguity on different levels is the main reason 
why natural language processing is challenging.

● Most NLP tasks can be solved by using Embeddings-CharCNN-
BiRNN pipeline.

● Pretraining language models allows for huge performance 
boosts for most NLP tasks

● For many NLP tasks SOTA can be achieved by using transformer-
based language models pretrained on a very large corpora
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Thank you for attention

Any questions?

We are hiring: job@abbyy.com
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