
Advances in Natural
Language Processing

MLSS-2019
31.08.2019

Ivan Smurov, ivan.smurov@abbyy.com

Overview

● Core NLP tasks

● NLP pipeline: embeddings, CharCNN,
BiRNNs

● Seq2seq and Transformers

● Language model embeddings: ELMo,
ULMFit, BERT

Core NLP tasks

● Machine translation

● Text classification

● Spam/ham

● Sentiment analysis (reviews)

● Thematic text classification

● Text clustering

3

Core NLP tasks

● Named Entity Recognition(NER)

● Syntactic Parsing

4

Core NLP tasks

● Relation extraction (fact extraction)

● Summarization

5

Core NLP tasks

● Question-answering Systems (QA)

● Conversational Systems, Chatbots

● Amazon Alexa

● Siri

● Yandex Alice

6

NLP is simple, right?

7Confidential

Why NLP is not that simple

● Language is highly ambiguous, there exist such phenomena like polysemy
and homonymy

● Polysemy: assembly, board, court

● Homonymy: bear, yard, train

● Press space bar to continue -> бар космический пресс продолжает работу

● There also exist sophisticated phenomena such as:

● Coreference: John hit the ball. He was angry

● Ellipsis: I ate the green apple and you, the red one.

● While humans can resolve such ambiguities by context easily enough, doing
this automatically is extremely challenging

8

Towards NLP Pipeline

● Until recently (2-4 years ago depending on a specific task) deep
learning did not perform significantly better than classical machine
learning. Now however the gap between these two approaches is
rapidly increasing.

● For most NLP tasks classical approaches have a task-specific
architecture and feature set that cannot be used in other tasks.

● Neural network architectures for different tasks have a lot more in
common, while the features used are in most cases from one feature
set.

● Thus we can talk about a universal NLP pipeline
9

NLP pipeline first steps: segmentation and
tokenization

● For most NLP tasks we work with discrete unit or token (words)
features.

● Token features should include some context-based information.
In modern models context is usually sentence level.

● Many NLP tasks (e. g. machine translation) are solved on the
sentence level. Others (e. g. chatbots) require extra sentence
context.

● Thus first two steps of NLP pipeline are sentence segmentation
and word tokenization.

10

Token features: embeddings

11

● An embedding is a mapping of discrete feature vector into dense vector of
fixed dimension h.

● Classic example is word embedding.
Original vector: x = (0, 0, … , 1, 0, … 0) of length v, where v is the size of dictionary
Resulting vector: x’= (0.2, 0.8, …, -15.9) of length h.

● Notable advantages:

● Feature space dimension reduction.

● Distributional properties i. e. similar elements have close embeddings.

● Can be trained from scratch but pretraining can boost performance
significantly

Embedding: vector magic

12

Embeddings pretraining

● Let us train on the task of predicting next token given previous one

● Input: one-hot encoding of the previous token

● Output: probability distribution of the next token over vocabulary

● Activation function of the
last layer is softmax:

● W or W’ are embedding
matrices

● Model is extremely simple
and we can train on unlabeled
data. Thus corpora used for
training are large (Wiki++)

13

Continuous bag of words

● Let us use for predictions several-token contexts
instead of one previous token

● For simplicity we will use weights 1 for all tokens
present in context and 0 for all not present.

● Order of tokens in context is not taken into account

● This model resembles bag of words,
thus the name: CBOW – continuous bag of words

14

Skip-gram model

● Let us consider a dual task: predict context
given word

● Model is called skip-gram

● On downstream tasks works better
than CBOW

● Output vector has the dimension V (size of
vocabulary) thus computing softmax is
computationally expensive. Many techniques
can be used for optimization. The most
popular: negative sampling

15

Negative sampling

16

● Key idea: instead of predicting the output distribution we intend to
differentiate each positive sample from k random samples.

● Positive samples are pairs of tokens and their contexts (w, c) occurred in the
training data.

● Negative samples are sampled as follows

● Loss formulation:

● Trained by SGD

● More computationally effective than computing full softmax while having
leading to similar results

Word2vec: summary and problems

● Word embeddings successfully solve 2 main problems of simple vector
models:

● Embedding dim can be manageable: usually around 100-1000

● Embeddings can represent similarity of tokens (synonymy etc.)

● Vanilla word2vec have several unsolved problems:

● Embeddings are built using fixed dictionary. Vectors on out of vocabulary words
are not defined. There are several traditional approaches to treat OOV:
– One vector for all OOV

– OOV depends on grammatical characteristics: e. g. a separate vector for OOV nouns, verbs, ect.

– OOV vector is computed as a mean for all embeddings in its context

● Embeddings depend only on the graphical form of the token i. e. embedding for
“Train” is same in both contexts “Train, dev, test” and “Train arrives at 10:15”

17

NLP pipline: token features

● Usually token features can be split into 3 groups:

● Word embeddings. In academia embeddings pretrained on large corpus are usually tuned on
smaller corpus. In practice having constant
pretrained embeddings yield similar results

● Char-level features: char embeddings for each token
are fed into CNN (or RNN) of limited dim. The result
is concatenated with other token features

● Additional token features: POS-tags (or their
embeddings), capitalization etc.

● Method first introduced in its whole in :
Lample el al (2016) Neural Architectures for Named Entity Recognition and
Ma and Hovy (2016) End-to-end Sequence Labeling via Bi-direcitonal LSTM-CNNs-CRF

Modern approaches: Embeddings +
CharCNN + BLSTM

● Almost any NLP task can be solved with
the following architecture:

● We compute context-independent
feature for each token (embeddings,
CharCNN, additional features)

● This vectors are fed into Bidirectional
RNN in order to compute context-
dependent features for each token

● Top layer is task specific: for example in
NER popular top layer is CRF

Seq2seq without attention mechanism

● Main idea: most NLP tasks (e. g. MT) can be treated as follows: given input
sequence generate output sequence (possibly of different length)

● 2 main parts of neural net – encoder and decoder (both consisting of recurrent
layers). Encoder processes input and generates vector c with info of all
sequence.

● Decoder generates output sequence until EOS is generated. Input consists of
c, previous decoder state h and output generated on the previous step

● Sutskever et al 2014 – “Sequence to sequence learning with neural networks”

20Confidential

Vanilla seq2seq disadvantages

● The whole input is compressed into one vector.

● Thus the representation quality decreases for longer input sequences

21Confidential

Attention mechanism

● Decoder states – si, encoder states – hj.

● Let us introduce attention ci – soft alignment between output at specific
step and the elements of input that influence output most at that step

● Almost no decrease in the quality of translation
on longer sentences

● Bahdanau et al 2014 “Neural Machine Translation
by Jointly Learning to Align and Translate”

22Confidential

Soft alignment

23Confidential

Global and local attention

● Attention is calculated after decoder. Thus architecture becomes less
sophisticated and stacking decoder layers can be realized in a natural way

● Local attention: attention is considered in window

● Attention history can be utilized

● Luong et al 2015“Effective
Approaches to Attention-based
Neural Machine Translation.”

24Confidential

Transformer overview

● Main idea: we can train encoder-decoder structures without using RNNs
with the help of attention mechanism.

● Training on comparable data yields similar results to RNN seq2seq.

● Using dense layers instead of RNNs is much more suitable for parallelism.

● Since without RNNs there is no information about relative positions of input
and output tokens, we have to use positional embeddings:

● Vaswani et al (2017) Attention is all you need

25

Scaled dot product attention and Multi-head
attention
● Let us redefine dot product attention used in seq2seq as follows:

Let us have 3 matrices: Q (queries), K (keys)
and V (values).

● In classical attention Q corresponds to decoder states matrix,
K = V to encoder states matrix.

● Let us define multi-head attention as follows:

26

Attention on different heads

27

Transformer encoder and decoder

● A good implementation
of transformer with
necessary comments
can be found here:
The Annotated
Transformer

28

http://nlp.seas.harvard.edu/2018/04/03/attention.html

Language modeling

● Language modeling is an NLP task of predicting the probability of the next
token in sequence given all previous tokens

● E. g. what sequence is more probable

● London is the capital of Great
– Britain

– Depression

● Let us compare language models with word2vec training task. Two key
differences:

● Language models take into account the order of tokens in context

● Word2vec uses a fixed size window as a context, LMs the whole previous text.

● This also allows to compute the probability of the whole sequence

29

Embeddings from Language models- ELMo

● Language model is pretrained on large corpus

● Language model architecture follows NLP pipeline introduced earlier

● Token features are CharCNN (word-level embeddings are not used)

● CharCNN are fed into two stacked Bidirectional RNNs

● Top layers: Dense with relu followed by Dense with softmax

● Pretrained LM can be used in downstream tasks as follows:

● The target sentence is fed into LM

● Token representation is defined as follows: task-specific weighted sum of
CharCNN and output of both BiRNNs

30

ELMo advantages

● Pretrained model is trained on a more complex task than word2vec and
uses deeper and more sophisticated architecture

● Unlike word2vec the resulting representation is context dependent

● Model allows for large
gains on most NLP tasks.

● Some researchers compare
pretraining LMs to the
creation of ImageNet for
Computer Vision

31

ULMFit

● ULMFit – SOTA for text classification task in 2018-2019

32

BERT

● BERT: Transformers instead of RNNs in language model
architecture

● Pretrained on extremely large corpora on two tasks:

● Masked language modeling

● Next sentence prediction

● SOTA for many NLP tasks

33

Using BERT on various tasks

34

XLNet

35

Language model embeddings bibliography

● ELMo: Peters et al. (2018) Deep contextualized word representations

● ULMFit: Howard & Ruder (2018) Universal Language Model Fine-tuning for
Text Classication

● OpenAI Transformer: Radford et al. (2018) Improving Language
Understanding by Generative Pre-Training

● BERT: Devlin et al. (2019) BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding

● XLNet: Yang et al. (2019) XLNet: Generalized Autoregressive Pretraining for
Language Understanding

● RoBERTA: Liu et al. (2019) RoBERTa: A Robustly Optimized BERT Pretraining
Approach

36

Takeaways

● The language ambiguity on different levels is the main reason
why natural language processing is challenging.

● Most NLP tasks can be solved by using Embeddings-CharCNN-
BiRNN pipeline.

● Pretraining language models allows for huge performance
boosts for most NLP tasks

● For many NLP tasks SOTA can be achieved by using transformer-
based language models pretrained on a very large corpora

37

Thank you for attention

Any questions?

We are hiring: job@abbyy.com

38

mailto:job@abbyy.com

